RCx

Method Validation for Selecting Baseline Solvent

Christina Y Piña Arpin

Rose Sepulveda

Mark Mcclure

Component Services Project Manager, NASA, White Sands Test Facility (WSTF) christina.y.pina.arpin@nasa.gov • (575) 524-5195

Outline

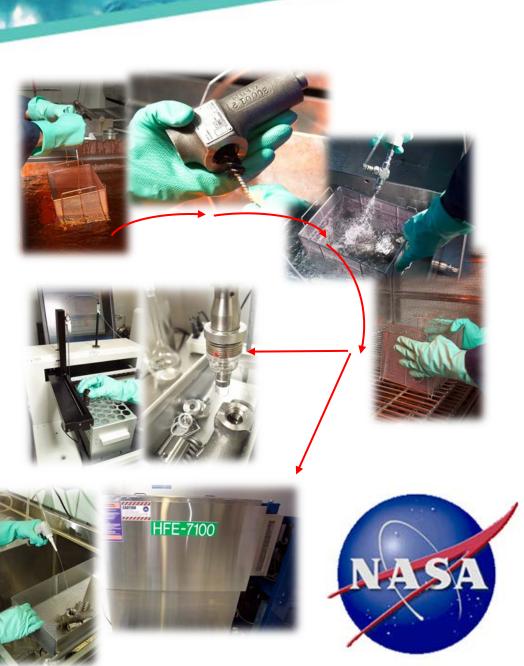
- Introduction & Background
- Objective
- Experimental Method
- Results & Discussion
- Conclusion

Introduction & Background

Replacing CFC-113 in the 90's

PCx

- Collaboration
 - DOD
 - NASA
 - Contractors
 - Solvent Manufactures
- Solvents
 - CFC
 - HCFC
 - HFE
 - TCE


WSTF's Experience

- Considerations for Solvents
 - Cleaning effectiveness
 - O₂ compatibility
 - Materials compatibility
 - Aerospace fluids compatibility

WSTF Cleaning Process

- Pre-cleaning
 - Ultra sonic
- Visual inspection
- Final clean/ cleanliness verification
 - DI water
 - HFE 7100
 - IPA
- Process Validation
 - AK 225G (baseline solvent)

Problem Statement

• WSTF Processes is dependent on AK-225G for process validation

• AK-225G limited availability in 2015

CX Objective

• To establish a standardized method for the evaluation of suitable replacement *baseline* solvent AK-225G.

Experimental Method

Standards for Testing Solvents

- ASTM G121. Standard Practice for Preparation of Contaminated Test Coupons for the Evaluation of Cleaning Agents. ASTM International, West Conshohocken, Pennsylvania, 1998.
- ASTM G122. Standard Test Method for Evaluating the Effectiveness for *Cleaning Agents*. ASTM International, West Conshohocken, Pennsylvania, 1996 Revised 2008.
- ASTM G127. *Standard Guide for the Selection of Cleaning Agents for Oxygen Systems*. ASTM International, West Conshohocken, Pennsylvania, 1995 revised 2008.

Attributes for a Baseline Solvent

ASTM Considerations

PCX

- Toxicity
- Carcinogenicity
- Recyclability
- Waste Disposal
- Ozone Depletion
- Inertness (Flammability and combustibility)
 Oxygen compatibility
- Availability and technical support from ________
- Corrosivity & material compatibility
- Cost effectiveness
- Compliance with local, state, and federal regulations
- Application and use of Solvent

Other Considerations

- HAP (Hazardous Air Pollutants)
- VOC (Volatile Organic Compounds)
- ACS reagent grade chemicals or higher
- Cleaning effectiveness
- <u>Evaporation rate</u>

So Many Choices!

ASTM Test Method Options

• Contamination of Coupons

PCx

- Slurry
 - Contaminants: 1 vs. mixture
 - Concentration: 1 to 100 mg/mL
- Application
 - 1 side vs. 2 sides
 - Pipette
 - Brush
 - Spray
 - Dip
- Dry
 - Hang vs. laying flat
- Cleaning of coupons
 - Manufacture's recommended use of solvent
 - Sonication
 - Elevated temperatures

Experiment Outline

Steps

- 1. Clean the coupons (standard)
- 2. Weigh the coupons (Tare weight)
- 3. Contaminate coupons
 - a) Analyze slurry filter/NVR
 - b) Oven dried
- 4. Weigh the coupon (Determine Contaminant)
- 5. Clean the coupon (test solvent)
 - a) Analyze rinse (filter / NVR)
 - b) Oven dried
- 6. Weigh the coupon (Residual contaminant)
- Verify cleanliness of coupon (AK-225-G, Verification solvent)
 - a) Analyze rinse (filter / NVR)
 - b) Oven dried

Matrix

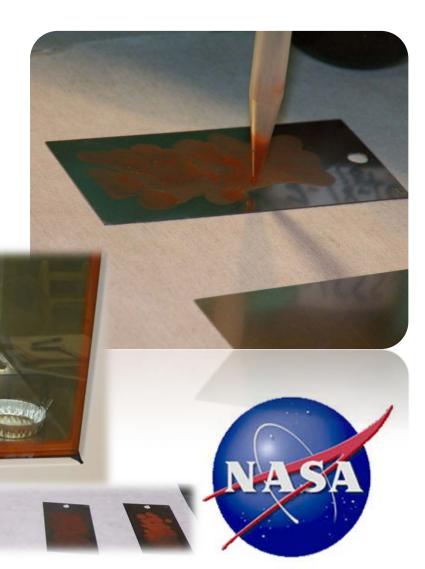
- Series 1
 - 1 Contamination Slurry for each solvent
 - 3 solvents tested
 - 7 coupons for each solvent
- Series 2
 - 1 contamination Slurry
 - 6 solvents
 - 1 coupon for each solvent

Contaminants

- Pump /hydrocarbon oil
- Hydraulic oil
- O₂ system lubricant
- Gage fluid
- Silicone grease
- Dye penetrates- particles
- Iron powder 60 Mesh- particles

Preparation of Contamination Slurry

- 5 slurry mixtures prepared
- 1 gram (+-.1g)
- 100 mL AK225-G
- Ultra Sonic 10 min
- Concentration 70 mg/mL



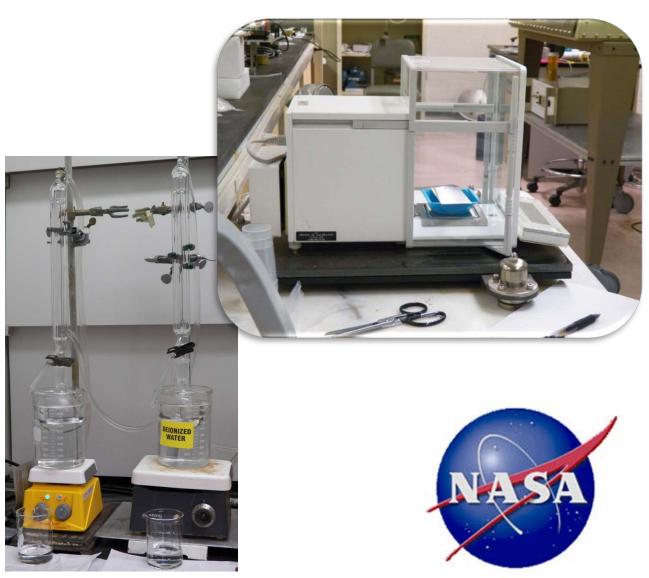
Contamination of Coupons

- 600 µL contamination Slurry
- Bake
 - 1 hr.
 - 45 °C (+/- 5°C)
 - Nitrogen purge
- Cool off 1 hr.

• Weighed

Cleaning & Verification

PCX



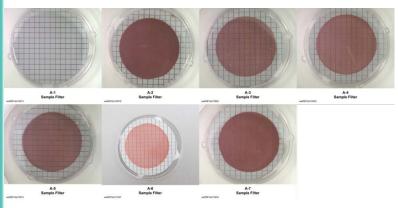
- Flush with 100 mL of solvent
 - NVR analysis
 - Particle count
- Cleaned with test solvent
- Verified clean with AK225G

Data Collection

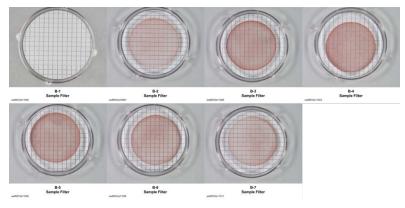
- Counting Particles
- Weighing coupons
- Weighing NVR
- Weighing filters

Results & Discussion

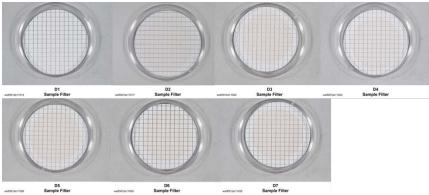
Post Cleaned, Pre AK225G Validated Coupons


Control	F	A (HCFC 225)	С
0		0 **	• E4
0 1			La construction of the second se
			cm 1 2 3 4 5 6 paradharadharadharadharadharadhar 15 1 1 2
G	Н	I	

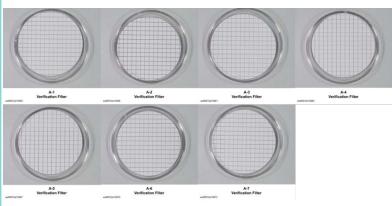
Symbol	Description	Values			
General					
S	Surface Area (cm^2)	45			
Ra	Surface Roughness (µm)	17			
Spec. Bal	>10g-205g (g)	0.002			
Clean Bal	0 - 10 mg (+-g)	0.00005			
Clean Bal	> 10 mg - 1 g (+-g)	0.0001			

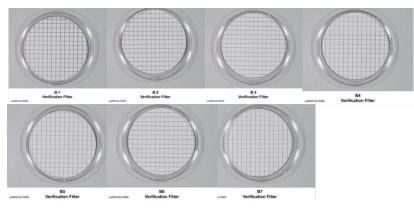


Post Cleaned, Pre Verification Filter Papers

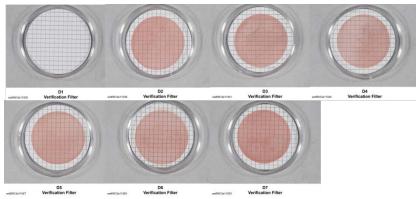

Cleaned with AK-225G

Cleaned with CFC-113


Cleaned with D



Post From AK-225G *Verification* **Filter Papers**


Cleaned with AK-225G

Cleaned with CFC-113

Cleaned with D

Cleaning Efficiency of Solvents

	Comparison of Contamination Analyzed on Coupons									
Symbol	Description	Solvents								
		*A {AK225G} (average)	• •	*D (average)	**F	**A {HCFC}	**C	**G	**H	**I
	Validation of experiment (g)	0.0007	-0.0002	0.0001	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
MCA	Mass of Contaminant Applied (g)	0.0423	0.0316	0.0359	0.0450	0.0318	0.0335	0.0334	0.0526	0.0382
MCR	Mass of Contaminant Removed (g)	0.0410	0.0312	0.0127	0.0303	0.0308	0.0323	0.0325	0.0296	0.0355
CEF	Cleaning Effectiveness Factor (%)	97.11%	98.88%	35.68%	67.33%	96.86%	96.42%	97.31%	56.27%	92.93%
с	Amount of Contamination (mg/cm^2)	0.9393	0.7015	0.7970	1.0000	0.7067	0.7444	0.7422	1.1689	0.8489
RC	Residual Contamination (mg/cm^2)	0.0270	0.0078	0.5152	0.3267	0.0222	0.0267	0.0200	0.5111	0.0600
VNVR	Verification Nonvolatile Residue Weight	0.0002	0.0005	0.0150						
	Comparison of Removed Contamination Analyzed				Key:					
Symbol	Description	Solvents		Baseline Solvents						
		*AK-225G (average)	*CFC-113 (average)	*D (average)		* Series 1				
SFW	Sample Filter contamination Weight (g)	0.0189	0.0054	0.7970		** Series 2	<u>)</u>			
VFW	Verification Filter Contamination Weight (g)	0.0005	0.0000	0.5152			74	-	100	

PCx

Cleaning Efficiency of Solvents *Continued*

Discussion

• 3 potential baseline solvents identified

PCx

- Comparison to past test: "wstf-ir-0134"
 - AK-225: 99% CEF
 - CFC-113: 97% CEF[™]

Limited data on solvents, F,C,G,H,I

	Comparison of Contamination Analyzed on Coupons									
Symbol	Description	Solvents								
		*A {AK225G} (average)		*D (average)	**F	**A {HCFC}	**C	**G	**H	**I
	Validation of experiment (g)	0.0007	-0.0002	0.0001	0.0004	0.0004	0.0004	0.0004	0.0004	0.000
МСА	Mass of Contaminant Applied (g)	0.0423	0.0316	0.0359	0.0450	0.0318	0.0335	0.0334	0.0526	0.038
MCR	Mass of Contaminant Removed (g)	0.0410	0.0312	0.0127	0.0303	0.0308	0.0323	0.0325	0.0296	0.035
CEF	Cleaning Effectiveness Factor (%)	97.11%	98.88%	35.68%	67.33%	96.86%	96.42%	97.31%	56.27%	92.939
с	Amount of Contamination (mg/cm^2)	0.9393	0.7015	0.7970	1.0000	0.7067	0.7444	0.7422	1.1689	0.848
RC	Residual Contamination (mg/cm^2)	0.0270	0.0078	0.5152	0.3267	0.0222	0.0267	0.0200	0.5111	0.060
VNVR	Verification Nonvolatile Residue Weight	0.0002	0.0005	0.0150						

Comparison of Removed Contamination Analyzed					
Symbol	Description	Solvents			
		*AK-225G (average)	*CFC-113 (average)	*D (average)	
SFW	Sample Filter contamination Weight (g)	0.0189	0.0054	0.7970	
VFW	Verification Filter Contamination Weight (g)	0.0005	0.0000	0.5152	

Key:	
Baseline Solvents	
* Series 1	
** Series 2	

Conclusion

Conclusion

- The use of AK-225G in the validation step proves additional assurance that candidate solvents qualify as baseline solvents.
- Test results that provide percent cleaning efficiencies provide guidance into selecting baseline solvents.
- Future studies should consider adequate sample size to better define cleanliness efficiency.

Questions ?

Back up slides

NVR Measured in Solvent Blanks

Solvent:	Measured NVR (mg) in 100 ml	Comments
C-HFE- (average)	3.3	Sample from Pressure Vessel
C-HFE	0.3	Sample from new bottle
D-HFE	0.4	
E-Solvent Blend	106700.3	Sample from Pressure Vessel
E-Solvent Blend	2.8	Sample from new mixture
F-HFE	0.1	Sample from bottle
G-HFE	0.2	Sample from bottle
H-HFE	0.1	Sample from bottle
I-HFE	0.3	Sample from bottle
J-Terpene	3.1	Sample from bottle.
K-HFE	0.1	Sample from bottle

- NVR criteria for solvents needs to be identified early on
- Evaporation rates role in analysis process
- Equipment compatibility with solvent
 - Beaker vs. pressure vessel

Lessons Learned/ Challenges

• Measure contaminates

PCx

- Identifying baseline, cleaning & verification solvent requirements.
- Testing location
 - Clean room
 - Vent hood
- Cross Contamination
- Experiment vs. Cleanroom practices.

